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Abstract

Vapor Pressure Deficit (VPD) is a principle mediator of global terrestrial CO2 uptake and water vapor loss through plant stomata. As such,
methods to estimate VPD accurately and efficiently are critical for ecosystem and climate modeling efforts. Based on prior work relating energy
partitioning, remotely sensed land surface temperature (LST), and VPD, we developed simple linear models to predict VPD using saturated vapor
pressure calculated from MODIS LST at a number of different temporal and spatial resolutions. We developed and assessed the LST–VPD models
using three data sets: (1) instantaneous and daytime average ground-based VPD and radiometric temperature from the Soil Moisture Experiments
in 2002 (SMEX02); (2) daytime average VPD from AmeriFlux eddy covariance flux tower observations; and (3) estimated daytime average VPD
from Global Surface Summary of Day (GSSD) observations. We estimated model parameters for VPD estimation both regionally (MOD11 A2)
and globally (MOD11 C2) with RMSE values ranging from .32 to .38 kPa. VPD was overestimated along coastlines and underestimated in arid
regions with low vegetation cover. Also, residuals were larger with higher VPDs because of the non-linear function of saturation vapor pressure
with LST. Linear relationships were seen at multiple scales and appear useful for estimation purposes within a range of 0 to 2.5 kPa.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Vapor Pressure Deficit (VPD), the difference between
saturated vapor pressure at air temperature and actual vapor
pressure, is one of the most important climatic variables used in
ecosystem models to simulate fluxes and states of water and
carbon (Waring & Running, 1998). High VPD causes plants to
reduce stomatal aperture to prevent excessive water loss, which
in turn reduces CO2 uptake for photosynthesis. VPD estimates
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on a daily or weekly basis are used in models of carbon cycling
by vegetation (e.g. Aber et al., 1996; Van Wijk et al., 2000;
White et al., 2000) and are critical to the understanding of
vegetation behavior under drought stress.

For regional and global ecosystem carbon andwatermodeling,
the spatial pattern of meteorological variables usually is
calculated through spatial interpolation of data from surface
weather stations. These interpolation techniques, including
Thiessen polygons (Thiessen, 1911), inverse-distance weighting
(Watson & Philip, 1985), ordinary kriging (Brooker, 1979),
truncated Gaussian filtering (Thornton et al., 1997), and thin plate
splines (Hutchinson & Gessler, 1994), are suitable in situations
where measurements are available at sufficient density. Mapping
VPD with interpolation presents several challenges. First, the
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Fig. 1. Map of 12 AmeriFlux sites (⋄) and Walnut Creek (⁎).
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spatial distribution of humidity measurements is often too sparse
for implementation of an interpolation scheme (New et al., 1999).
Second, though relative humidity measurements are sometimes
available, there is incomplete reporting on whether the record of
relative humidity is an instantaneous observation or a daily
average (New et al., 1999). This introduces error in the conversion
of relative humidity to vapor pressure. Third, since VPD includes
the effect of two temperatures (air temperature and dew point
temperature), when biases are quite different for these two
temperatures this can result in an even larger relative error in VPD
estimates (Jolly et al., 2005). An alternative to interpolation is to
find a variable strongly related to VPD that is measured
extensively or even exhaustively. Elevation, though clearly
related to air temperature through the lapse rate, is not closely
related to VPD so elevation cannot be used directly in the
estimation of VPD (Jolly et al., 2005).

In response to existing shortcomings and capitalizing on the
availability of satellite data, Granger (1991) developed a
technique to predict regional patterns of VPD from remotely
sensed land surface temperature (LST). In comparison to
Fig. 2. Spatial distribution of GSSD stations. The gray scale shows the
interpolation methods, estimating VPD from LST has at least
two advantages. First, satellite observations have the potential
to provide global coverage of LST from which to generate VPD
estimates every day. The daily coverage is not realized because
of the occurrence of clouds, but satellite LST is still far more
dense and extensive than are ground-based measurements.
Second, fewer calculations are required in a simple transfer
function such as that from a regression than in an interpolation
scheme. Granger (1991, 2000) proposed the following empir-
ical model for daily VPD:

VPD ¼ 0:668e⁎ðLSTÞ � 0:015Tltm � 0:278 ð1Þ

where e⁎(LST) is saturation vapor pressure at the mean daily
LST estimated from satellite data and Tltm is long-term mean air
temperature. Granger (1991, 2000) ascribed this simple
relationship to a feedback link between land surface temperature
and near-surface humidity (a function of water availability for
evapotranspiration). The feedback link is inherent in the
complementary relationship (Boucher, 1963): the summation
density of the stations (number of stations per 1 degree×1 degree).



Table 1
Summary of the data sources and scales used in the methodology

Step VPD data source Temporal resolution
of VPD data

LST data source Spatial resolution
of LST data

Spatial extent Temporal extent

1 From tower-based humidity and
temperature measurements

Instantaneous Tower-based
infrared radiometer

Quasi-point 10 SMEX02 sites in Walnut
Creek watershed

18 days 06/25/
2002–07/12/2002

2 From tower-based humidity and
temperature measurements

Daytime Tower-based
infrared radiometer

Quasi-point 10 SMEX02 sites in Walnut
Creek watershed

18 days 06/25/
2002–07/12/2002

3 From tower-based humidity and
temperature measurements

Daytime TERRA
MOD11A2

1 km 12 Ameriflux sites in
conterminous US north of 38° N

One year 2001

4 From min, max and dewpoint
temperature measurements

8-day TERRA
MOD11A2

1 km 1079 GSSD sites in conterminous
US

One year 2001

5 From min, max and dewpoint
temperature measurements

8-day TERRA and
AQUA MOD11C2

0.05° 6069 global GSSD sites 8 days 08/5/2004–
08/12/2004

Table 2
Slopes and intercepts of the regression models fit to the training data for each
step of the methods

Step Slope Intercept RMSE MAE

1 (10:30 am) .321 − .241 .318 .257
1 (1:30 pm) .383 − .287 .346 .277
2 .321 − .255 .331 .263
3 .391 − .028 .385 .274
4 .353 .154 .373 .254
5 (Terra) .341 .198 .338 .252
5 (Aqua) .270 .305 .322 .247

Root-Mean-Square-Error (RMSE) and Mean Absolute Error (MAE) from the
test data for each step.
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of actual evapotranspiration and potential evapotranspiration is
equal to twice the equilibrium evapotranspiration. That is, under
a wide variety of climatological conditions over a region
without abrupt environmental discontinuities, actual and
potential evapotranspiration are linked. The complementary
relationship theory has been examined and validated in many
climatic regions (e.g., Brutsaert & Stricker, 1979; Hobbins et al.,
2001; Morton, 1983), though the underlying theory remains
controversial (McNaughton& Spriggs, 1989). Assumptions of the
complementary relationship include (i) an equilibrium state
between the land and the atmosphere, (ii) no advection of energy,
and (iii) sufficient land surfacemoisture tomaintain the connection
between land and the atmosphere via evaporation. A linear rela-
tionship between VPD and e⁎(LST) can fail to materialize under
conditionswhen these assumptions are notmet, for example, when
the soil surface becomes very dry. Appendix A contains further
details on how the feedback link leads to linearity between these
two variables under a range of conditions.

Our objective in this study is to test a Granger-type linear
model at a number of temporal and spatial resolutions to gain an
understanding of how well the simple relationship may hold for
application in regional and global ecosystem modeling. Our
approach differs from prior research in significant technical and
conceptual aspects. A technical aspect is the use of the LST
product (Wan et al., 2004) from the Moderate Resolution
Imaging Spectroradiometer (MODIS) instruments carried on
the TERRA (morning overpass) and AQUA (afternoon
overpass) satellites. MODIS data represent key advantages in
comparison to the previously used Advanced Very High
Resolution Radiometer (AVHRR) including 1) highly regular
satellite overpass times obviating the orbital drift corrections
needed for AVHRR (Lakshmi & Zehrfuhs, 2002), 2) availability
of atmospheric water vapor information from MODIS spectral
bands to increase the accuracy of LST retrieval (Wan & Li,
1997), 3) physically-based emissivity estimates from seven
MODIS spectral bands (Wan et al., 2002) and 4) better cloud
screening. Conceptually, we examine the theoretical principles
at multiple measurement resolutions and extents; at an
intensively instrumented site, widely distributed flux tower
sites across a continent, and additional sites distributed globally.
While we do not expect the models to be scale invariant given
the spatial heterogeneity of surface temperature and the non-
linear dependence of saturation vapor pressure on surface
temperature, we are interested in investigating how well a linear
model shape is preserved over multiple scales. If linear models
are useful at multiple scales, this supports the robustness of the
feedback link concept as a basis for VPD estimation.

2. Data

We investigated relationships between VPD and e⁎(LST) at
a variety of different temporal and spatial resolutions. These
included instantaneous VPD (VPDins) to confirm the land–
atmosphere coupling at short time scales, daytime-average VPD
(VPDday) to test how well a single LST observation in the
diurnal cycle can represent the daytime average critical for
ecosystem modeling, and an 8-day average of daytime-average
VPD (VPD8day) corresponding to the frequency of MODIS LST
product availability.

2.1. Instantaneous and daytime VPD and LST from SMEX02
sites

WeobtainedVPD andLST data from12 flux towers in the Soil
Moisture Experiments in 2002 (SMEX02) at Walnut Creek near
Ames, Iowa (Fig. 1) to examine the relationship between ground-
based measurements of VPDins and e⁎(LST). The objectives of
SMEX02 were to extend instrument observations and algorithms
to a broader range of vegetation conditions, validate land surface
parameters retrieved from satellite microwave sensors and to
evaluate new instrument technologies for soil moisture remote
sensing. Two types of crop canopies comprised the landcover on



Fig. 3. Scatterplots between e⁎(LST) derived from ground-based radiometers and VPDins for every 3 h [a–h] and time-series of slope and correlation coefficient (r) [i]
in Walnut Creek. Times are Central Daylight Time. Straight lines in the scatterplots [a–h] are linear regression lines.
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the sites— corn and soybean. During the experiment, radiometric
surface temperature on the sites was measured every 10 min by
infrared sensors suspended on towers about 5 m above ground
level over corn and about 2.5 m above ground level over soybean
(Jackson & Cosh, 2003). Air temperature (Ta) and vapor pressure
(ea) were measured at 1.5 m above the canopy and used to
calculate VPDins:

VPDins ¼ e⁎ðTaÞ � ea: ð2Þ

VPDday was calculated as the average VPDins when solar
radiation was greater than 0. Two of the twelve sites were
deleted from the analysis because of an anomalous trend in
VPD at one site (suspected to be caused by sensor bias) and
unusual “spikes” in VPD at another site. Data representing
either corn or soybean landcover were available from June 25,
2002 to July 12, 2002.
2.2. 8-day average VPD from Ameriflux sites

We used AmeriFlux data (Baldocchi et al., 2001) from 12 sites
(Fig. 1) over 2001. Ameriflux is a network of tower platforms and
instrumentation that provides continuous observations of ecosys-
tem-level exchanges of CO2, water, energy and momentum over
daily, seasonal, and annual time scales based on the eddy-
covariance flux approach. At the 12 sites, air temperature and
vapor pressure were measured from towers above the vegetation
canopy every 30 min and used with Eq. (2) to calculate VPDins.
VPDday was calculated as the averageVPDins when solar radiation
was greater than 0. Averaging half-hourly VPDins data provided a
more direct method of estimating VPDday than the common
method of using maximum temperature, minimum temperature
and average humidity. VPDday values were averaged over every
non-overlapping 8-day period over the year to calculate
VPD8day.



Fig. 4. VPDday versus ground-based e⁎(LST) at 10:30 am local time in Walnut Creek. The straight line is a linear regression line fit to the training data.
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2.3. 8-day average VPD from GSSD stations

Daily dew point and minimum and maximum air tempera-
tures from the 2001 Global Surface Summary of Day (GSSD)
data version 6 produced by the National Climatic Data Center
(NCDC) were used to estimate VPDday. An assumption of
sinusoidal variation of air temperature over the day is made to
estimate current temperature at each hour:

Tt ¼ Tmax � Tmin

2
sin

2k
24

t � k
2

� �
þ Tmax þ Tmin

2
ð3Þ

where Tt is air temperature at time t (hour). Daytime VPD is
then estimated by integrating the estimated difference between
vapor pressure at each hour and saturation vapor pressure from
the dewpoint over daylight hours

VPDday ¼ 1
12

Z 18

6
fe⁎ðTtÞ � e⁎ðTdewÞgdt: ð4Þ

Eq. (4) was evaluated using Simpson's Rule. We believe the
errors introduced by this method are less than 200 Pa on a daily
basis under clear sky conditions (Running et al., 1987). Values
from Eq. (4) were averaged to produce a VPD8day estimate for
Fig. 5. VPD8day versus MOD11-based e⁎(LST) at Ameriflux sites in 200
every non-overlapping 8-day period over 2001. From the
uneven network of GSSD stations (Fig. 2), we selected stations
with less than 20% missing data that were not on small islands.
In the conterminous US, 1079 stations met these criteria and
6069 met them globally. They are most densely concentrated in
the eastern US and Europe but available on all continents except
for Antarctica.

2.4. LST from the MODIS 11 product

We obtained 1 km Collection 4 TERRA MOD11 A2,
representing land surface temperature, at AmeriFlux and
conterminous US GSSD stations. MOD11 A2, calculated
using the generalized split window technique (Wan & Dozier,
1996), is the 8-day average of cloud free daily MOD11 A1 data.
Collection 4 data are the products generated using the best
algorithms available as of 2004. For GSSD stations outside the
US, we used the 0.05 degree TERRA and AQUA MOD11 C2
product. MOD11 C2 represents the 8-day average of cloud free
daily MOD11 C1 data derived from 5 kmMOD11 B1 data (Wan
& Li, 1997). MOD11 LST is estimated in various landcover
types with accuracy to within 1 K (Wan et al., 2002, 2004). To
avoid cloudy or otherwise contaminated observations, we only
1. The straight line is a linear regression line fit to the training data.



Fig. 6. GSSD VPD8day versus MOD11-based e⁎(LST) in the conterminous US for 2001. The straight line is the linear regression line fit to the training data.
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used LST data with quality control flags set to 00 (highest
quality).

3. Methods

3.1. Model development

We modeled the relationships between ground-based
measurements e⁎(LST) and VPD as well as satellite-derived
e⁎(LST) at a number of scales. We pursued the following five
steps with the available data. In all steps, we used the following
equation to calculate saturation vapor pressure:

e⁎ðTÞ ¼ 0:6107e17:38T=239:0þT ð5Þ

where e⁎(T) is given in kPa and T (LST when using MODIS
data) is given in °C (Abbott & Tabony, 1985). The data sources
Fig. 7. Spatial distribution of the residuals of the regression li
and scales used in each step are summarized in Table 1. The five
steps were:

(1) Examine the relationship between instantaneous VPD and
saturation vapor pressure based on in-situ measured LST
at Walnut Creek. We modeled the relationships between
VPDins measured at the Walnut Creek towers versus
e⁎(LST) calculated from the 5 m-high radiometers every
3 h to observe diurnal variations of the feedback link.

(2) Examine the relationship between daytime average VPD
and measured LST at Walnut Creek. We modeled the
relationship between VPDday estimated at the Walnut
Creek towers versus e⁎(LST) measured from the 5 m-
high radiometers at 10:30 am local time.

(3) Examine the relationship between 8-day average VPD and
MODIS-based LST at AmeriFlux sites. In a more
spatially-distributed analysis, we modeled the relationship
ne from step 4 at GSSD stations in the conterminous US.



Fig. 8. (a) Average residual from the regression line versus distance from the
nearest coastline. (b) Average residual from the regression line versus annual
maximum LAI. (c) Average residual from the regression line versus long-term
average temperature.
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between VPD8day from Ameriflux data versus the 1 km
TERRA MOD11 A2-based e⁎(LST) at 10:30 am local
time at the 12 Ameriflux sites.

(4) Examine the relationship between 8-day average VPD
and MODIS-based LST at GSSD sites in the contermi-
nous US. We modeled the relationship of GSSD-derived
estimates of VPD8day for US locations in 2001 versus the
1 km TERRA MOD11 A2-based e⁎(LST).

(5) Examine the relationship between 8-day average VPD
and MODIS-based LST at GSSD sites around the globe.
Fig. 9. GSSD VPD8day versus MOD11-based e⁎(LST) in the conterminous US for 20
stations within 50 km from coastlines or with less than 0.5 annual maximum LAI a
We modeled the relationship of GSSD-derived estimates
of VPD8day for global locations for a single composite
period (August 5 to August 12) in 2004 versus the 0.05°
TERRA and AQUA MOD11 C2.

3.2. Error evaluation

We used data splitting to assess the regression models for
steps 2–5 above. In each case, two-thirds of the data chosen at
random from the complete set were used as a training set to
estimate the parameters of a linear regression model. The one-
third of the data withheld from the training set was used for
testing the model and estimating error. Errors are expressed as
Root-Mean-Squared-Error (RMSE)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i

ðyi � f ðxiÞÞ2
s

ð6Þ

and Mean Absolute Error (MAE)

MAE ¼ 1

n

Xn
i

jyi � f ðxiÞj ð7Þ

where yi is the ith observed test sample value, n is the number
of test sample values and f (xi) is the estimated ith value.
3.3. Tests in specific regions

As the above steps rely mainly on data from moist temperate
sites in the US or Europe, where station density is high, we
examined e⁎(LST) versus VPD8day for a tropical and a semi-
arid site. We applied the model developed in step 4 to GSSD
data from Porto Velho (8.76° S, 63.91° W) in the tropical
Amazon and Kurnool (15.80° N, 78.06° E) in semi-arid India.

Furthermore, to compare patterns of spatial variability from
the MODIS-based e⁎(LST) method with traditional interpola-
tion techniques, we generated a VPD8day surface for April 23 to
April 29, 2001 using the model developed in step 4 withMOD11
A2 e⁎(LST) for the state of California. We also interpolated
01. The straight line is the linear regression line fit to the training data. Data from
re excluded.



Fig. 10. GSSD VPD8day versus (a) MOD11 e⁎(LST) from TERRA and (b) MOD11 e⁎(LST) from AQUA for all global stations with leaf area index greater than 0.5 for
the DOY 217 to 224 composite period.
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daily station data from the NCDC (with elevation adjustment)
for the same region using ordinary kriging.

4. Results

Parameters of the linear models fit to the training data from
steps 1 through 5 and errors calculated from the test data are
listed in Table 2.

4.1. Tower-based e⁎(LST) versus VPDins and VPDday (steps 1
and 2)

The data from the in-situ infrared sensor measurements at
Walnut Creek showed that linear relationships between e⁎(LST)
and VPD existed for both VPDins (Fig. 3) and VPDday (Fig. 4).
Linear relationships between e⁎(LST) and VPDins were observed
from 8:00 am to 6:00 pm Central Daylight Time (CDT). At night,
due to the small range of both VPD and LST, the correlation
coefficient between e⁎(LST) and VPDins was small. In the
daytime, the slope of the linear regression line increased steadily
from noon to 5:00 pm CDT. The difference in thermal inertia
between the land surface and the atmosphere would be expected
to lead to increasing slopes as the land surface responds more
slowly than the atmosphere to increasing insolation, causing
LST to rise more slowly than VPD. Despite the change of slope,
these results show that the instantaneous feedback link is active
during the day, including at the overpass times of TERRA
(10:30 am local time) and AQUA (1:30 pm local time). The
daytime average VPD, VPDday, at the Walnut Creek towers was
linearly related to e⁎(LST) at 10:30 am (Fig. 4) with a MAE of
.26 kPa (Table 2), suggesting that VPDday may be estimated with
only an instantaneous observation of surface temperature at 10:30
am local time, the overpass time of the TERRA satellite.

4.2. MODIS-based e⁎(LST) versus VPD8day

4.2.1. AmeriFlux sites (step 3)
A linear relationship was also found between MOD11 A2

e⁎(LST) and AmeriFlux VPD8day (Fig. 5), with a MAE of
0.27 kPa.

4.2.2. GSSD stations in the conterminous US (step 4)
The analysis of 2001 e⁎(LST) and VPD8day for the

conterminous US showed similar results to the Walnut Creek



Fig. 11. Tests at Porto Velho in the Amazon (a and b) and at Kurnool in India (c and d). (a) and (c) are plots of VPD8day against MODIS-based e⁎(LST) and the
straight line is from Eq. (8). (b) and (d) are time series of observed VPD8day (line) from the GSSD station record and estimated VPD8day (filled circles) from
MOD11 LST data.

150 H. Hashimoto et al. / Remote Sensing of Environment 112 (2008) 142–155
and AmeriFlux analyses: a clear linear relationship between
MODIS-based e⁎(LST) and VPD8day (Fig. 6) with 0.25 kPa
MAE (Table 2). In contrast to the scatterplots in Figs. 4 and 5
where residuals appear to support homoskedasticity, residuals
increased with increasing e⁎(LST). When the residuals are
mapped to their locations (Fig. 7), it is apparent that there are
geographical clusters of stations that have particularly high or
low residuals. Along coastal California, Washington and New
England, VPD residuals are high, indicating that the best-fit
linear model would overestimate VPD at these locations. A plot
of the residuals versus distance from coastlines (Fig. 8a) shows
that the regression line overestimates VPD within about 50 km
from coastlines. Low residuals occurred in the arid region of
California and Arizona (Fig. 7). Those regions are characterized
by low values of annual maximum Leaf Area Index (LAI) as
represented by the MODIS 15 LAI product (Knyazikhin et al.,
1999). Fig. 8b shows apparent underestimation for stations that
have maximum LAI less than 0.5.

Since Granger's model (1991, 1997) included a dependency
on long-term temperature, we looked at regression residuals at
the GSSD stations versus long-term average temperature
(Fig. 8c). The long-term average temperature was calculated
as the yearly average from 1980 to 2005 using GSSD records.
There was no obvious trend with long-term average temper-
ature (Fig 8c) nor was any latitudinal temperature gradient
evident in the model residuals (Fig. 7). The scatter of points
(Fig. 6) shows a slight curvilinear shape at low values of
e⁎(LST). Overestimates when long-term average temperature
was below 6 °C (Fig. 8c) were caused by the non-zero intercept
of the regression line resulting from the choice of a linear
model. Though a Tltm term was used in Granger (1991, 2000),
the coefficient on this term was very small.
A new model was fit to the training data excluding the
locations within 50 km of the coast and locations with MODIS
LAI b0.5 (Fig. 9)

VPD8day ¼ 0:353e⁎ðLSTð10 : 30amÞÞ þ 0:154: ð8Þ

4.2.3. GSSD stations globally (step 5)
For the global GSSD stations from August 5 to August 12 in

2004, VPD8day was linearly related to MOD11 C2-based
e⁎(LST) from both TERRA and AQUA platforms (Fig. 10).
The MAE calculated on the test data was 0.25 kPa for both
TERRA and AQUA, a similar magnitude of error as found
with the models developed in previous steps. We note that the
slope from TERRA data (0.341) was greater than the slope for
AQUA data (0.270), and both slopes were smaller than slopes
found in steps 3 and 4. A reduction in slope might be expected
when pixel size increases because of the reduction in variance
of the x-axis variable caused by spatial averaging. Part of the
reduction in slope when comparing the results of step 5 with
those of steps 3 and 4 may be due to this effect.

4.3. Results of tests in specific regions

Application of Eq. (8) to the tropical Porto Velho and semi-
arid Kurnool resulted in RMSE values of .35 and .72 re-
spectively and MAE values of .27 and .60 respectively (Fig. 11a
and c). The estimates as a time series showed generally good
agreement with some error during anomalous weather events
(Fig. 11b and d). In Porto Velho, Eq. (8) simulated the overall
seasonal variation of VPD8day well even though the variability
of VPD8day was low (0 – 3.5 kPa). However, the short dry
period from DOY 210 to 250 was not well represented. In



Fig. 12. Spatial patterns of VPD in the state of California estimated with (a) MOD11-based e⁎(LST) and (b) ordinary kriging with elevation adjustment for DOY 113 to
120 in 2001. Those elevation and station data used to calculate (b) are shown in (c).
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Kurnool, Eq. (8) captured the larger seasonal variation of
VPD8day estimated from station data. The Asian Monsoon
creates pronounced dry and wet seasons in Kurnool; severe dry
conditions from DOY 120 to 140 that likely violate the
feedback link hypothesis (Appendix A) led to VPD8day

underestimation. LST estimates from MODIS have higher
uncertainty under dry conditions (Wan et al., 2002). An
additional plausible explanation of the underestimation when
LST values are high is that errors in LST estimation are
magnified when used in the exponential function e⁎(LST)
because of the law of uncertainty propagation. In the rainy
season from DOY 150 to 300, cloud contamination prevented
VPD8day estimation.

The MOD11 A2-based model from Eq. (8) resulted in
extensive VPD8day heterogeneity in the central valley of
California (Fig. 12a). Kriging (Fig. 12b), in which most
variation was generated by elevation change (Fig. 12c), showed
a highly constrained VPD8day range. Thus, even in one of the
more densely instrumented areas of the world, station density
does not capture the probable large spatial heterogeneity of
VPD. This result indicates that satellite-based VPD estimation
may be especially useful for capturing spatial details.

5. Discussion

We have developed and tested very simple regression models
for estimating VPD at a variety of spatial and temporal
resolutions from remotely sensed e⁎(LST) without recourse to
ancillary information such as land cover, leaf area index, or soil
properties. VPD estimation from remote sensing is not new, but
our approach includes multi-scale analysis from point to globe
that has only recently become possible and avoids problematic
treatment of variables such as total precipitable water and
vertical temperature profiles (Czajkowski et al., 2002). We used
MODIS-derived products for the first time, which facilitated
regional and global tests.

MAEs observed from test data in the five analysis steps
tended to be of a similar magnitude, roughly 15–20% of the
mean VPD value. Similarly, RMSEs were fairly consistent
across models, roughly 20–25% of the mean. Jolly et al. (2005)
had a similar goal of mapping regional VPD, but used
interpolation methods to predict values between measurement
stations. In that study, interpolated VPD surfaces resulted in a
cross-validation MAE of 0.14 kPa from inverse distance
weighting, 0.17 kPa from a truncated Gaussian filter and
0.29 kPa from ordinary kriging for the conterminous United
States. Cross validation errors and those found with a large
sample of test data, as in this study, are not directly comparable,
and so the relative accuracy of the two cannot be judged without
a sufficiently large set of test data that interpolation methods
could be tested with in parallel with the linear models developed
here.

Users should be aware of temporal and spatial resolution
issues inherent in these analyses. Note that different temporal
and spatial resolutions of VPD and LST in the five steps
resulted in different slopes and intercepts. This is not un-
expected, for in order for an algorithm to be scale invariant, two
conditions must be met: (1) the algorithm functions must be
linear and (2) the input variables must also be scale invariant;
that is, the variable value at a pixel can be calculated as the area-
weighted average of the sub-pixel patch-scale values (Hall
et al., 1992). The e⁎(LST) method satisfies condition 2 but,
due to inclusion of the exponential function of saturation vapor
pressure, condition 1 is violated. Any algorithm describing
VPD as a function of e⁎(LST) will therefore not be scale
invariant.
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The lack of scale invariance helps explain why the model
parameters in Table 2 are different than those in the model
developed by Granger (Eq. (1)). Granger used satellite-derived
LST with different spatial resolutions than MODIS and used
estimates of daily average LST rather than instantaneous LST.
We ignored the problems inherent in extrapolating instanta-
neous LST estimates to daily average values (Jin & Dickinson,
1999; Jin, 2004). In addition, we did not find that long-term air
temperature helped explain VPD and so did not use the Tltm
term used by Granger. Other reasons, such as undiscovered
biases in VPD estimation using station data or errors in LST
estimation using MODIS might also help account for
differences.

There are basic scale-mismatch problems inherent in steps 2–5.
That is, the spatial and temporal resolutions of the e⁎(LST) and
VPD variables differ. For example, in all of these steps, LST is
measured instantaneously and VPD is a temporal average over a
day or an 8-day period. Therefore, there is an aspect of the simple
linear models that incorporates a change-of-scale. Those wishing
to employ a linear model should give careful consideration to the
temporal and spatial resolutions of the data they have available and
at what resolutions they wish to predict. The theoretical relation-
ships derived in the Appendix are for quasi-point and instanta-
neous spatial and temporal resolutions and so cannot be used
directly to develop models relevant to area- and time-integrated
variables.

Averaging ten-minute (in the case of Walnut Creek) or half-
hourly (in the case of Ameriflux) VPDins data provide a more
direct method of estimating VPDday than the common method
of using maximum temperature, minimum temperature and
average humidity. The VPD data from flux tower stations are
likely to be more accurate than VPD estimated at GSSD stations
using temperature data. AmeriFlux sites represent ideal
conditions for the e⁎(LST) method for two reasons: (1) they
are designed to observe CO2 and latent heat fluxes for specific
landcovers and consequently their footprints are relatively
spatially homogeneous and (2) humidity is observed above the
canopy, the assumed location in most ecosystem models. These
considerations may suggest the use of the equation developed in
step 3. However, Ameriflux data do not represent a global range
of land surfaces and is a small data set limiting the amount of
model evaluation that can be done. These factors should be
considered when selecting a model from those developed here.

Cloud cover limits the operational use of our method. We
developed our models using 8-day LST products derived from
daily products produced only in clear-sky pixels, as deter-
mined by the 99% confidence level from the MODIS cloud
mask (Ackerman et al., 1998). Nonetheless, sub-pixel broken
clouds are known to contaminate the LST products (Wan et al.,
2002), which may in turn create uncertainty in calculated slope
values.

The method has potential to obtain spatial patterns of VPD
for broad regions, but caution should be applied near coastlines
and in very arid regions where the annual maximum LAI is less
than 0.5. Sea breezes may partly explain the overestimation
along the coastlines since they represent water advection onto
land. Further analysis concentrated on the interaction between
the land surface and atmosphere adjacent to oceans could prove
informative. In arid regions where annual maximum LAI is less
than 0.5, the coupling between land and the atmosphere is
dominated by sensible heat flux over long periods of time,
conditions that tend to violate the equilibrium that this method is
based on.

6. Conclusions

We revisited the e⁎(LST) method of predicting VPD
proposed by Granger (1991, 2000) for regional and global
scales. Our approach represents an empirical investigation of
the explanatory power of simple linear relationships for
describing a key variable used in many ecosystem models
using currently available satellite-based measurements. It
hinges on the instantaneous measure of land surface tempera-
ture captured by polar-orbiting satellites. We note the general
robustness of this approach as expressed in linear relationships
observed in data from ground observations in SMEX02,
Ameriflux, an extensive network of surface weather stations,
and satellite remote sensing from MODIS. The errors in this
analysis were of similar magnitude to results from interpolation
methods, making our approach attractive in regions with sparse
weather observations. However, this method overestimates
VPD within 50 km of coastlines and underestimates VPD in
very arid, non-vegetated regions. Also, the uncertainty is greater
when VPD is high.

While use of both TERRA and AQUA data will increase the
chances of obtaining cloud-free data (Wan et al., 2004),
operational implementation of the e⁎(LST) method for near
real-time ecological monitoring and modeling (e.g. Nemani et al.,
2003) is fundamentally limited by cloud contamination. The
strengths of the technique, computational simplicity and the ability
to represent fine spatial detail, though, are well suited to couple
with observational networks. Similarly, ground observations could
be ingested in an assimilation technique to adjust any emergent
biases in VPD from e⁎(LST). This scheme would combine
synoptic satellite capabilities with critical ground based observa-
tions to represent VPD variability for modeling and monitoring
applications quickly, reliably, and accurately. Satellite data are
becoming widely available, often within minutes of data
collection, through the internet as well as from inexpensive
receivers. Simple algorithms such as our VPD method could be
easily implemented on inexpensive computers such that satellite
observations can be translated to useful information regarding such
as estimates of evapotranspiration by using ecosystem models, if
possible, with the correction of biases using ground-observation
data.
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Fig. A1. Results of numerical experiments to investigate the relationship between VPD and e⁎(LST). Experiment (a) changed the input energy (Q=800, 1000, and 1200W
m−2). Experiment (b) changed the air temperature (Ta=20, 30, and 40 °C). Experiment (c) changed the aerodynamic resistance (ra=20, 60, and 100 s m

−1). Experiment (d)
changed both the input energy and the air temperature (Q=800 W m−2 and Ta=20 °C, Q=1000 W m−2 and Ta=30 °C, and Q=1200 W m−2 and Ta=40 °C).
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study from local to global scales.

Appendix A. Theory of the linear relationship between
VPD and e⁎(LST)

In this section, we explain the linear relationship between
VPD and e⁎(LST) from the feedback link. We begin with the
complementary relationship (Boucher, 1963)

Ea ¼ 2Ee� Ep ðA1Þ
where Ea is the actual evapotranspiration, Ee is the equilibrium
evapotranspiration, and Ep is the potential evapotranspiration. The
excess evaporation energy (Ee−Ea) due to the unavailability of
water is added to the equilibrium evaporation energy (Ee) as the
potential evaporation energy (Ep), or Ee−Ea=Ep−Ee (this is
equivalent to Eq. (A1)). We modeled the feedback link using the
advection–aridity model (Brutsaert & Stricker, 1979) which
estimates Ep by Eq. (A2) (Penman, 1948) and Ee by Eq. (A3)
(Priestley & Taylor, 1972).

kEp ¼ D
Dþ g

ðRn � GÞ þ D ðA2Þ
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kEe ¼ a
D

Dþ g
ðRn � GÞ ðA3Þ

where α is a constant value of 1.28, Δ is the slope of the saturation
vapor pressure deficit at the air temperature, γ is the psychrometric
constant, D is the drying power of air, λ is the latent heat of
vaporization, Rn is the net radiation, and G is the ground heat flux.
We calculated D from VPD (cf. Nishida et al., 2003) such that

D ¼ qCp
VPD

ðDþ gÞra ðA4Þ

where ra is aerodynamic resistance, ρ is the density of air, and Cp
is the specific heat capacity of air. VPD is e⁎(Ta)−ea, where Ta

is the air temperature and ea is the vapor pressure of air. For other
constraining conditions, we used the energy budget Eq. (A5) and
the radiation budget Eq. (A6).

Rn � G ¼ H þ kEa ðA5Þ

Rn ¼ ð1� aÞSAþ LA� Lz ðA6Þ

where H is the sensible heat flux, a is the surface albedo, S↓ is the
downward shortwave radiation, L↓ is the downward longwave
radiation and Lz is the upward longwave radiation. We calculated
H as:

H ¼ qCp
Ts � Ta

ra
ðA7Þ

where Ts is surface temperature. We expressed Lz as a function of
Ts

Lz ¼ erTs4 ðA8Þ
where σ is the Stefan–Boltzmann constant, 5.67⁎10−8 W m−2

K−4, and ε is surface emissivity (set to 1). We defined the input
energy Q as

Q ¼ Rn � Gþ Lz ¼ ð1� aÞSAþ LA� G: ðA9Þ

Rearranging, the energy balance equation becomes

Q ¼ H þ kEaþ Lz: ðA10Þ

Using four numerical experiments (Table A1) and the system
of equations described above, we developed a theoretical model
space to explain the relationship between VPD and e⁎(LST).
We implemented single parameter variations for Q (experiment
A), Ta (experiment B), and ra (experiment C). In the diurnal
cycle, Q and Ta tend to vary in tandem, so in experiment D we
changed both Q and Ta proportionally. We ignored unrealistic
results for clear days (negative sensible or latent heat flux);
these occurred in conditions too humid or too dry to explain
evapotranspiration by the complementary relationship.

For each experiment, we found the almost linear relationship
between VPD and e⁎(LST) proposed by Granger (Fig. A1).
High LST leads to high H and low Ea from the energy budget
Eq. (A5). The complementary relationship between Ea and Ep
(Eq. (A1)) results in high Ep. This, in turn, results in high VPD
as per Eq. (A4). Based on these simulations, the following
principles emerged. Larger Q decreases e⁎(LST) since more
energy is available for latent heat flux (Fig. A1a). Due to the
exponential function of saturation vapor pressure with temper-
ature, higher air temperature widens the range of the linear
relationship (Fig. A1b). Higher ra leads to smaller e⁎(LST)
because, at constant Ee, higher ra implies smaller Ep and larger
Ea such that less energy is partitioned to H (Fig. A1c). When
co-varied realistically, the effects of Q and Ta produce a highly
linear relationship between VPD and e⁎(LST). Although ra has
some impact on the coefficients of the regression equation,
these results provide the theoretical basis for our proposition
that a linear function may be used to estimate VPD from
e⁎(LST).

We note that these numerical experiments demonstrate an
instantaneous linearity between VPD and e⁎(LST). Modeling
the relation between daytime average VPD and e⁎(LST) is less
straightforward because of the complication of diurnal variation
in the terms of Eqs. (A1)–(A10).

Table A1Table A1
Description of the variables (Q, Ta, and ra) for each numerical experiment

−2 −1
Experiment
 Q (W m )
 Ta (°C)
 ra (s m )
A
 800, 1000, 1200
 30
 60

B
 1000
 20, 30, 40
 60

C
 1000
 30
 20, 60, 100

D
 800, 1000, 1200
 20, 30, 40
 60
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